alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (LexicalContext.java)

This example Java source code file (LexicalContext.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assertionerror, block, breakablenode, class, couldn\'t, functionnode, iterator, labelnode, lexicalcontextnode, loopnode, nodeiterator, override, string, stringbuffer, util

The LexicalContext.java Java example source code

/*
 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package jdk.nashorn.internal.ir;

import java.io.File;
import java.util.Iterator;
import java.util.NoSuchElementException;
import jdk.nashorn.internal.codegen.Label;
import jdk.nashorn.internal.runtime.Debug;
import jdk.nashorn.internal.runtime.Source;

/**
 * A class that tracks the current lexical context of node visitation as a stack of {@link Block} nodes. Has special
 * methods to retrieve useful subsets of the context.
 *
 * This is implemented with a primitive array and a stack pointer, because it really makes a difference
 * performance wise. None of the collection classes were optimal
 */
public class LexicalContext {
    private LexicalContextNode[] stack;

    private int[] flags;
    private int sp;

    /**
     * Creates a new empty lexical context.
     */
    public LexicalContext() {
        stack = new LexicalContextNode[16];
        flags = new int[16];
    }

    /**
     * Set the flags for a lexical context node on the stack. Does not
     * replace the flags, but rather adds to them.
     *
     * @param node  node
     * @param flag  new flag to set
     */
    public void setFlag(final LexicalContextNode node, final int flag) {
        if (flag != 0) {
            // Use setBlockNeedsScope() instead
            assert !(flag == Block.NEEDS_SCOPE && node instanceof Block);

            for (int i = sp - 1; i >= 0; i--) {
                if (stack[i] == node) {
                    flags[i] |= flag;
                    return;
                }
            }
        }
        assert false;
    }

    /**
     * Marks the block as one that creates a scope. Note that this method must
     * be used instead of {@link #setFlag(LexicalContextNode, int)} with
     * {@link Block#NEEDS_SCOPE} because it atomically also sets the
     * {@link FunctionNode#HAS_SCOPE_BLOCK} flag on the block's containing
     * function.
     * @param block the block that needs to be marked as creating a scope.
     */
    public void setBlockNeedsScope(final Block block) {
        for (int i = sp - 1; i >= 0; i--) {
            if (stack[i] == block) {
                flags[i] |= Block.NEEDS_SCOPE;
                for(int j = i - 1; j >=0; j --) {
                    if(stack[j] instanceof FunctionNode) {
                        flags[j] |= FunctionNode.HAS_SCOPE_BLOCK;
                        return;
                    }
                }
            }
        }
        assert false;
    }

    /**
     * Get the flags for a lexical context node on the stack
     * @param node node
     * @return the flags for the node
     */
    public int getFlags(final LexicalContextNode node) {
        for (int i = sp - 1; i >= 0; i--) {
            if (stack[i] == node) {
                return flags[i];
            }
        }
        throw new AssertionError("flag node not on context stack");
    }

    /**
     * Get the function body of a function node on the lexical context
     * stack. This will trigger an assertion if node isn't present
     * @param functionNode function node
     * @return body of function node
     */
    public Block getFunctionBody(final FunctionNode functionNode) {
        for (int i = sp - 1; i >= 0 ; i--) {
            if (stack[i] == functionNode) {
                return (Block)stack[i + 1];
            }
        }
        throw new AssertionError(functionNode.getName() + " not on context stack");
    }

    /**
     * Return all nodes in the LexicalContext
     * @return all nodes
     */
    public Iterator<LexicalContextNode> getAllNodes() {
        return new NodeIterator<>(LexicalContextNode.class);
    }

    /**
     * Returns the outermost function in this context. It is either the program, or a lazily compiled function.
     * @return the outermost function in this context.
     */
    public FunctionNode getOutermostFunction() {
        return (FunctionNode)stack[0];
    }

    /**
     * Pushes a new block on top of the context, making it the innermost open block.
     * @param node the new node
     * @return the node that was pushed
     */
    public <T extends LexicalContextNode> T push(final T node) {
        if (sp == stack.length) {
            final LexicalContextNode[] newStack = new LexicalContextNode[sp * 2];
            System.arraycopy(stack, 0, newStack, 0, sp);
            stack = newStack;

            final int[] newFlags = new int[sp * 2];
            System.arraycopy(flags, 0, newFlags, 0, sp);
            flags = newFlags;

        }
        stack[sp] = node;
        flags[sp] = 0;

        sp++;

        return node;
    }

    /**
     * Is the context empty?
     * @return true if empty
     */
    public boolean isEmpty() {
        return sp == 0;
    }

    /**
     * The depth of the lexical context
     * @return depth
     */
    public int size() {
        return sp;
    }

    /**
     * Pops the innermost block off the context and all nodes that has been contributed
     * since it was put there
     *
     * @param node the node expected to be popped, used to detect unbalanced pushes/pops
     * @return the node that was popped
     */
    @SuppressWarnings("unchecked")
    public <T extends LexicalContextNode> T pop(final T node) {
        --sp;
        final LexicalContextNode popped = stack[sp];
        stack[sp] = null;
        if (popped instanceof Flags) {
            return (T)((Flags<?>)popped).setFlag(this, flags[sp]);
        }

        return (T)popped;
    }


    /**
     * Return the top element in the context
     * @return the node that was pushed last
     */
    public LexicalContextNode peek() {
        return stack[sp - 1];
    }

    /**
     * Check if a node is in the lexical context
     * @param node node to check for
     * @return true if in the context
     */
    public boolean contains(final LexicalContextNode node) {
        for (int i = 0; i < sp; i++) {
            if (stack[i] == node) {
                return true;
            }
        }
        return false;
    }

    /**
     * Replace a node on the lexical context with a new one. Normally
     * you should try to engineer IR traversals so this isn't needed
     *
     * @param oldNode old node
     * @param newNode new node
     * @return the new node
     */
    public LexicalContextNode replace(final LexicalContextNode oldNode, final LexicalContextNode newNode) {
       //System.err.println("REPLACE old=" + Debug.id(oldNode) + " new=" + Debug.id(newNode));
        for (int i = sp - 1; i >= 0; i--) {
            if (stack[i] == oldNode) {
                assert i == (sp - 1) : "violation of contract - we always expect to find the replacement node on top of the lexical context stack: " + newNode + " has " + stack[i + 1].getClass() + " above it";
                stack[i] = newNode;
                break;
            }
         }
        return newNode;
    }

    /**
     * Returns an iterator over all blocks in the context, with the top block (innermost lexical context) first.
     * @return an iterator over all blocks in the context.
     */
    public Iterator<Block> getBlocks() {
        return new NodeIterator<>(Block.class);
    }

    /**
     * Returns an iterator over all functions in the context, with the top (innermost open) function first.
     * @return an iterator over all functions in the context.
     */
    public Iterator<FunctionNode> getFunctions() {
        return new NodeIterator<>(FunctionNode.class);
    }

    /**
     * Get the parent block for the current lexical context block
     * @return parent block
     */
    public Block getParentBlock() {
        final Iterator<Block> iter = new NodeIterator<>(Block.class, getCurrentFunction());
        iter.next();
        return iter.hasNext() ? iter.next() : null;
    }

    /**
     * Returns an iterator over all ancestors block of the given block, with its parent block first.
     * @param block the block whose ancestors are returned
     * @return an iterator over all ancestors block of the given block.
     */
    public Iterator<Block> getAncestorBlocks(final Block block) {
        final Iterator<Block> iter = getBlocks();
        while (iter.hasNext()) {
            final Block b = iter.next();
            if (block == b) {
                return iter;
            }
        }
        throw new AssertionError("Block is not on the current lexical context stack");
    }

    /**
     * Returns an iterator over a block and all its ancestors blocks, with the block first.
     * @param block the block that is the starting point of the iteration.
     * @return an iterator over a block and all its ancestors.
     */
    public Iterator<Block> getBlocks(final Block block) {
        final Iterator<Block> iter = getAncestorBlocks(block);
        return new Iterator<Block>() {
            boolean blockReturned = false;
            @Override
            public boolean hasNext() {
                return iter.hasNext() || !blockReturned;
            }
            @Override
            public Block next() {
                if (blockReturned) {
                    return iter.next();
                }
                blockReturned = true;
                return block;
            }
            @Override
            public void remove() {
                throw new UnsupportedOperationException();
            }
        };
    }

    /**
     * Get the function for this block. If the block is itself a function
     * this returns identity
     * @param block block for which to get function
     * @return function for block
     */
    public FunctionNode getFunction(final Block block) {
        final Iterator<LexicalContextNode> iter = new NodeIterator<>(LexicalContextNode.class);
        while (iter.hasNext()) {
            final LexicalContextNode next = iter.next();
            if (next == block) {
                while (iter.hasNext()) {
                    final LexicalContextNode next2 = iter.next();
                    if (next2 instanceof FunctionNode) {
                        return (FunctionNode)next2;
                    }
                }
            }
        }
        assert false;
        return null;
    }

    /**
     * Returns the innermost block in the context.
     * @return the innermost block in the context.
     */
    public Block getCurrentBlock() {
        return getBlocks().next();
    }

    /**
     * Returns the innermost function in the context.
     * @return the innermost function in the context.
     */
    public FunctionNode getCurrentFunction() {
        for (int i = sp - 1; i >= 0; i--) {
            if (stack[i] instanceof FunctionNode) {
                return (FunctionNode) stack[i];
            }
        }
        return null;
    }

    /**
     * Get the block in which a symbol is defined
     * @param symbol symbol
     * @return block in which the symbol is defined, assert if no such block in context
     */
    public Block getDefiningBlock(final Symbol symbol) {
        if (symbol.isTemp()) {
            return null;
        }
        final String name = symbol.getName();
        for (final Iterator<Block> it = getBlocks(); it.hasNext();) {
            final Block next = it.next();
            if (next.getExistingSymbol(name) == symbol) {
                return next;
            }
        }
        throw new AssertionError("Couldn't find symbol " + name + " in the context");
    }

    /**
     * Get the function in which a symbol is defined
     * @param symbol symbol
     * @return function node in which this symbol is defined, assert if no such symbol exists in context
     */
    public FunctionNode getDefiningFunction(Symbol symbol) {
        if (symbol.isTemp()) {
            return null;
        }
        final String name = symbol.getName();
        for (final Iterator<LexicalContextNode> iter = new NodeIterator<>(LexicalContextNode.class); iter.hasNext();) {
            final LexicalContextNode next = iter.next();
            if (next instanceof Block && ((Block)next).getExistingSymbol(name) == symbol) {
                while (iter.hasNext()) {
                    final LexicalContextNode next2 = iter.next();
                    if (next2 instanceof FunctionNode) {
                        return ((FunctionNode)next2);
                    }
                }
                throw new AssertionError("Defining block for symbol " + name + " has no function in the context");
            }
        }
        throw new AssertionError("Couldn't find symbol " + name + " in the context");
    }

    /**
     * Is the topmost lexical context element a function body?
     * @return true if function body
     */
    public boolean isFunctionBody() {
        return getParentBlock() == null;
    }

    /**
     * Returns true if the expression defining the function is a callee of a CallNode that should be the second
     * element on the stack, e.g. <code>(function(){})(). That is, if the stack ends with
     * {@code [..., CallNode, FunctionNode]} then {@code callNode.getFunction()} should be equal to
     * {@code functionNode}, and the top of the stack should itself be a variant of {@code functionNode}.
     * @param functionNode the function node being tested
     * @return true if the expression defining the current function is a callee of a call expression.
     */
    public boolean isFunctionDefinedInCurrentCall(FunctionNode functionNode) {
        final LexicalContextNode parent = stack[sp - 2];
        if (parent instanceof CallNode && ((CallNode)parent).getFunction() == functionNode) {
            return true;
        }
        return false;
    }

    /**
     * Get the parent function for a function in the lexical context
     * @param functionNode function for which to get parent
     * @return parent function of functionNode or null if none (e.g. if functionNode is the program)
     */
    public FunctionNode getParentFunction(final FunctionNode functionNode) {
        final Iterator<FunctionNode> iter = new NodeIterator<>(FunctionNode.class);
        while (iter.hasNext()) {
            final FunctionNode next = iter.next();
            if (next == functionNode) {
                return iter.hasNext() ? iter.next() : null;
            }
        }
        assert false;
        return null;
    }

    /**
     * Count the number of with scopes until a given node
     * @param until node to stop counting at, or null if all nodes should be counted
     * @return number of with scopes encountered in the context
     */
    public int getScopeNestingLevelTo(final LexicalContextNode until) {
        //count the number of with nodes until "until" is hit
        int n = 0;
        for (final Iterator<WithNode> iter = new NodeIterator<>(WithNode.class, until); iter.hasNext(); iter.next()) {
            n++;
        }
        return n;
    }

    private BreakableNode getBreakable() {
        for (final NodeIterator<BreakableNode> iter = new NodeIterator<>(BreakableNode.class, getCurrentFunction()); iter.hasNext(); ) {
            final BreakableNode next = iter.next();
            if (next.isBreakableWithoutLabel()) {
                return next;
            }
        }
        return null;
    }

    /**
     * Check whether the lexical context is currently inside a loop
     * @return true if inside a loop
     */
    public boolean inLoop() {
        return getCurrentLoop() != null;
    }

    /**
     * Returns the loop header of the current loop, or null if not inside a loop
     * @return loop header
     */
    public LoopNode getCurrentLoop() {
        final Iterator<LoopNode> iter = new NodeIterator<>(LoopNode.class, getCurrentFunction());
        return iter.hasNext() ? iter.next() : null;
    }

    /**
     * Find the breakable node corresponding to this label.
     * @param label label to search for, if null the closest breakable node will be returned unconditionally, e.g. a while loop with no label
     * @return closest breakable node
     */
    public BreakableNode getBreakable(final IdentNode label) {
        if (label != null) {
            final LabelNode foundLabel = findLabel(label.getName());
            if (foundLabel != null) {
                // iterate to the nearest breakable to the foundLabel
                BreakableNode breakable = null;
                for (final NodeIterator<BreakableNode> iter = new NodeIterator<>(BreakableNode.class, foundLabel); iter.hasNext(); ) {
                    breakable = iter.next();
                }
                return breakable;
            }
            return null;
        }
        return getBreakable();
    }

    private LoopNode getContinueTo() {
        return getCurrentLoop();
    }

    /**
     * Find the continue target node corresponding to this label.
     * @param label label to search for, if null the closest loop node will be returned unconditionally, e.g. a while loop with no label
     * @return closest continue target node
     */
    public LoopNode getContinueTo(final IdentNode label) {
        if (label != null) {
            final LabelNode foundLabel = findLabel(label.getName());
            if (foundLabel != null) {
                // iterate to the nearest loop to the foundLabel
                LoopNode loop = null;
                for (final NodeIterator<LoopNode> iter = new NodeIterator<>(LoopNode.class, foundLabel); iter.hasNext(); ) {
                    loop = iter.next();
                }
                return loop;
            }
            return null;
        }
        return getContinueTo();
    }

    /**
     * Check the lexical context for a given label node by name
     * @param name name of the label
     * @return LabelNode if found, null otherwise
     */
    public LabelNode findLabel(final String name) {
        for (final Iterator<LabelNode> iter = new NodeIterator<>(LabelNode.class, getCurrentFunction()); iter.hasNext(); ) {
            final LabelNode next = iter.next();
            if (next.getLabel().getName().equals(name)) {
                return next;
            }
        }
        return null;
    }

    /**
     * Checks whether a given label is a jump destination that lies outside a given
     * split node
     * @param splitNode the split node
     * @param label     the label
     * @return true if label resides outside the split node
     */
    public boolean isExternalTarget(final SplitNode splitNode, final Label label) {
        boolean targetFound = false;
        for (int i = sp - 1; i >= 0; i--) {
            final LexicalContextNode next = stack[i];
            if (next == splitNode) {
                return !targetFound;
            }

            if (next instanceof BreakableNode) {
                for (final Label l : ((BreakableNode)next).getLabels()) {
                    if (l == label) {
                        targetFound = true;
                        break;
                    }
                }
            }
        }
        assert false : label + " was expected in lexical context " + LexicalContext.this + " but wasn't";
        return false;
    }

    @Override
    public String toString() {
        final StringBuffer sb = new StringBuffer();
        sb.append("[ ");
        for (int i = 0; i < sp; i++) {
            final Object node = stack[i];
            sb.append(node.getClass().getSimpleName());
            sb.append('@');
            sb.append(Debug.id(node));
            sb.append(':');
            if (node instanceof FunctionNode) {
                final FunctionNode fn = (FunctionNode)node;
                final Source source = fn.getSource();
                String src = source.toString();
                if (src.contains(File.pathSeparator)) {
                    src = src.substring(src.lastIndexOf(File.pathSeparator));
                }
                src += ' ';
                src += fn.getLineNumber();
                sb.append(src);
            }
            sb.append(' ');
        }
        sb.append(" ==> ]");
        return sb.toString();
    }

    private class NodeIterator <T extends LexicalContextNode> implements Iterator {
        private int index;
        private T next;
        private final Class<T> clazz;
        private LexicalContextNode until;

        NodeIterator(final Class<T> clazz) {
            this(clazz, null);
        }

        NodeIterator(final Class<T> clazz, final LexicalContextNode until) {
            this.index = sp - 1;
            this.clazz = clazz;
            this.until = until;
            this.next  = findNext();
        }

        @Override
        public boolean hasNext() {
            return next != null;
        }

        @Override
        public T next() {
            if (next == null) {
                throw new NoSuchElementException();
            }
            T lnext = next;
            next = findNext();
            return lnext;
        }

        private T findNext() {
            for (int i = index; i >= 0; i--) {
                final Object node = stack[i];
                if (node == until) {
                    return null;
                }
                if (clazz.isAssignableFrom(node.getClass())) {
                    index = i - 1;
                    return clazz.cast(node);
                }
            }
            return null;
        }

        @Override
        public void remove() {
            throw new UnsupportedOperationException();
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java LexicalContext.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.